八年级数学的知识点有很多,一定要扎实把握,小编整理了一些重要的知识点。
轴对称与轴对称图形知识点
1、什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2、什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3、轴对称与轴对称图形的区别与联系:
(1)区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
(2)联系:①两部分都完全重合,都有对称轴,都有对称点。②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4、线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
5.轴对称的性质
(1)成轴对称的两个图形全等。
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6、怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
全等三角形
1、两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2、全等三角形的性质:全等三角形的对应角相等、对应边相等。
3、三角形全等的判定公理及推论有
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形。
等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:
(1)等腰三角形的两个底角相等。
(2)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)。
(3)等腰三角形的两底角的平分线相等。
(4)等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
(5)等腰三角形的一腰上的高与底边的夹角等于顶角的一半
(6)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高。
以上是小编整理的八上数学知识点,希望能帮到你。