有界数列一定收敛吗

管理员2025-04-2997阅读评论

有界数列不一定收敛。例如,已知数列{(-1)^n}是有界的,但它却是发散的。换句话说,有界是数列收敛的必要条件而不是充分条件。又例如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1{b(n)}有界,b(n)为摆动数列,但是不收敛。

有界数列一定收敛吗

有界数列定义

数列{Xn}满足:对一切n有Xn≤M(其中M是与n无关的常数)称数列{Xn}上有界(有上界)并称M是他的一个上界。

对一切n有Xn≥m(其中m是与n无关的常数)称数列{Xn}下有界(有下界)并称m是他的一个下界。

一个数列{Xn},若既有上界又有下界,则称之为有界数列。显然数列{Xn}有界的一个等价定义是:存在正实数X,使得数列的所有项都满足|Xn|≤X,n=1,2,3,……。

文章版权声明:除非注明,否则均为本站原创文章,转载或复制请以超链接形式并注明出处。